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Abstract. Water clarity provides a sensitive tool to examine spatial pattern and historical trend in lakes trophic status. Yet, 

this metric has insufficiently been explored despite the availability of remotely-sensed data. We used three Secchi disk depth 

(SDD) datasets for model calibration and validation from different field campaigns mainly conducted during 2004-2018. The 15 

red/blue band ratio algorithm was applied to map SDD for lakes (>1 ha) based on the first SDD dataset, where R2 = 0.79, 

RMSE = 100.3 cm, rRMSE = 61.9%, MAE = 57.7 cm. The other two datasets were used to validate the SDD estimation 

model, which were indicated the model had a stable performance of temporal transferability. The annual mean SDD of lakes 

were retrieved across China using Landsat top of air reflectance products in GEE from 1984 to 2018. The spatiotemporal 

dynamics of SDD were analysed at the five lake regions and individual lake scales, and the average, changing trend, lake 20 

number and area, and spatial distribution of lake SDDs across China were presented. In 2018, we found that the lakes with 

SDDs < 2 m accounted for the largest proportion (80.93%) of the total lakes, but the total area of lakes with SDD between 0-

0.5 m and > 4 m were the largest, accounting for 48.28% of the total lakes. During 1984-2018, lakes in the Tibetan-Qinghai 

Plateau lake region (TQR) had the clearest water with an average value of 3.32±0.38 m, while that in the Northeastern lake 

region (NLR) exhibited the lowest SDD (mean: 0.60±0.09 m). Among the 10,814 lakes with SDD results more than 10 years, 25 

55.42% and 3.49% of lakes experienced significant increasing and decreasing trends, respectively. At the five lake regions, 

except for the Inner Mongolia-Xinjiang lake region (MXR), more than half of the total lakes in every other lake region 

exhibited significant increasing trends. In the Eastern lake region (ELR), NLR and Yungui Plateau lake region (YGR), 

almost more than 50% of the lakes that displayed an increase or decrease in SDD were mainly distributed in an area of 0.01-

1 km2, whereas that in the TQR and MXR were primarily concentrated in large lakes (> 10 km2). Spatially, lakes located in 30 

the plateau regions generally exhibited higher SDD than those situated in the flat plain regions. The dataset can now be 

accessed through the website of the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn): DOI: 

10.11888/Hydro.tpdc.271571. 
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1 Introduction 

Lakes and reservoirs are important aquatic habitats and serve as freshwater water sources for drinking, industrial and 35 

agricultural uses (Pekel et al., 2016; Tranvik et al., 2009; Wetzel, 2001). More than 26,000 lakes (with area >1 ha) and 

78,000 reservoirs are distributed across China (Song et al., 2018), providing multiple ecosystem services (Feng et al., 2019b; 

Lehner and Doll, 2004; Tranvik et al., 2009; Yang and Lu, 2014). Over the last four decades, China has made considerable 

achievements with respect to socio-economic development but has also faced increasing water pollution challenges due to, 

among other contributing factors, agricultural nonpoint pollution, wastewater discharge, urban expansion, and increased 40 

water consumption (Han et al., 2016; Qin et al., 2010; Tong et al., 2017). Eutrophication and algal blooms proliferation are 

the clearest manifestations of these water quality problems, and major efforts have been made (afforestation, conversion of 

cropland to grassland or wetland) to mitigate these impacts and restore the ecological integrity of inland water systems 

(Huang et al., 2016; Ma et al., 2020; Tong et al., 2020).  

Across the country, the number of stations dedicated to the monitoring of water quality in lakes (59) and reservoirs (52) 45 

are very limited in comparison to the national inventory of lakes and reservoirs (SOEE, 2018). Water resource managers in 

China clearly need better assessment tools to monitor inland water quality (Rosenzweig et al., 2011). Commonly expressed 

as Secchi disk depth (SDD) (Carlson, 1977), water clarity provides both a practical and a comprehensive measure of the 

trophic state of aquatic ecosystems (Olmanson et al., 2008; Richardson et al., 2010). However, traditional SDD 

measurements are limited in terms of their suitability for monitoring large water bodies exhibiting strong spatiotemporal 50 

dynamics (Kloiber et al., 2002; Song et al., 2020). Although a Secchi disk apparatus is easy to operate in the field, water 

clarity monitoring in lakes or reservoirs (herein lakes) located in remote areas could be nearly impossible without aquatic 

vehicles and may not yield data with sufficient spatial and temporal frequency necessary for trend analysis (Kloiber et al., 

2002; Olmanson et al., 2008).  

The abundance of optically-active constituents (OACs; phytoplankton, non-algal particles and CDOM) is related to the 55 

trophic status of aquatic ecosystems, and also contributes to water clarity and water surface reflectance which can be 

captured by space-borne sensors (Gordon et al., 1983; Lee et al., 2015). Remote sensing has been widely used for monitoring 

the spatiotemporal dynamics of SDD at regional and national scale. Available methods for SDD estimation using remote 

sensing data can be grouped into three categories: analytical, semi-analytical, and empirical algorithms (Doron et al., 2007; 

Lee et al., 2015; Liu et al., 2020b; McCullough et al., 2013; Olmanson et al., 2008; Olmanson et al., 2011). The first two 60 

methods are difficult to apply to large-scale studies (provincial and national scales) due to the complex theoretical models 

and parameterization processes, and expensive equipment required (Cao et al., 2017; Giardino et al., 2007). The last group of 

methods is widely used to retrieve SDD at multiple scales due to its simplicity and operability (Duan et al., 2009; Feng et al., 

2019a; Kloiber et al., 2002; McCullough et al., 2012; Olmanson et al., 2011a; Pi et al., 2020; Shen et al., 2020; Song et al., 

2020).  65 
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In the past, we faced the challenge of how to handle and analyse big data at national or global scales, like remote sensing 

datasets from different satellites. Since 2010, Google has launched the big geo data platform based on cloud computing, 

named Google Earth Engine (GEE), which is time-saving for users to do some scientific researches online (such as 

vegetation, agriculture, hydrology, land cover and other applications) without downloading these satellite images (Amani et 

al., 2020). The GEE platform mainly comprises datasets of remote sensing, geophysics and meteorology. The remote sensing 70 

datasets contain Landsat (1972-present), Moderate Resolution Imaging Spectrometer (MODIS; 2000-present) and Sentinel 

(2014-present) (https://code.earthengine.google.com/). Remote sensing images are selectively used to estimate SDD for 

specific regions according to their spatial and temporal resolutions, among which the Landsat images can not only be used to 

examine the long-term (3-4 decades) spatiotemporal variation of SDD but also monitor lakes ranging from the small to the 

large with its higher spatial resolution (30 m). Yet, the wealth of ecological information contained in the archived Landsat 75 

images has not been fully explored. Therefore, the GEE platform is an optimal choice to quickly map SDD long time-series 

dynamics based on Landsat observation across China. 

 In recent years, a few studies have examined the spatiotemporal dynamics of SDD in lakes across China, but they mainly 

focused on the large lakes and reservoirs (area >10 km2) (Liu et al. 2020a; Wang et al. 2020a; Zhang et al. 2021). Smaller 

lakes (area < 10 km2) are widely distributed across the country, but our understanding of their ecological status remains 80 

limited. For example, Liu et al. (2020a) used an empirical model and the MODIS red and green bands (2000-2018) within 

GEE to study SDD variation in 412 large lakes (area > 20 km2) across China. Wang et al. (2020a) applied water color 

parameters (Forel-Ule Index and hue angle) to MODIS data (2000-2017) and obtained SDD data for 153 lakes (> 25 km2) 

across China. Zhang et al. (2021) built a simple power function model based on Landsat red band (2016-2018) to 

investigate the spatial distribution of SDD in 641 lakes (≥10 km2) across China. In addition, other investigations of the 85 

spatio-temporal variations of SDD have been made using MODIS data for lakes in the Yangtze Plains (50 lakes, >10 km2; 

Feng et al., 2019) and in the Tibetan Plateau (64 lakes, >50 km2; Pi et al., 2020). In these studies, the empirical models 

exhibited better ability than other models to estimate SDD at large-scales.  

In this study, we tuned a recently-developed SDD empirical model which has been demonstrated as effective to map the 

spatial-temporal dynamics of SDD in surface waters based on atmospherically-corrected Landsat reflectance products in 90 

GEE (Song et al., 2020; Zhang et al., 2021). The overall purpose of this study was to map the spatiotemporal variation of 

SDD in lakes (>1 ha) across China from 1984 to 2018. Specifically, the objectives were to: (1) built a lake SDD estimation 

model across China based on extensive in-situ measurements; (2) derive SDD of lakes across China using Landsat data 

embedded in GEE; (3) analyse the inter-annual variability of SDD at the lake regions scale and the individual lake scale. 

Such a research would provide valuable information regarding water quality conditions and inform future water resources 95 

planning and management.  
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2 Study area  

China is a vast and physiographically-diverse country endowed with a large number of lakes. Based on broad regional 

variations of landforms and climate characteristics, the lakes in China have been grouped into five regions (Ma et al., 2011) 

(Fig. 1a). The Inner Mongolia-Xinjiang lake region (MXR) and Tibetan-Qinghai Plateau lake region (TQR) are located in 100 

arid or semiarid climates, while the Northeastern lake region (NLR), Yungui Plateau lake region (YGR) and Eastern lake 

region (ELR) are situated in the Asian monsoon climate zone. The MXR and TQR regions have lower annual precipitation, 

lower temperature and higher evaporation level than other three lake regions. Regionally, lakes distribution is as follows (in 

decreasing order): 49% in ELR, 22% in NLR, 18% in YGR, 8% in MXR and 4% in TQR (Fig. 1b). However, on the basis of   

lake surface area, regional distribution is slightly different and is in the order:  TQR (41%) >  ELR (30%) > MXR (14%) > 105 

NLR (10%) > ELR (6%) (Fig. 1b). The lakes in the plateau region with higher elevation are less affected by human activities, 

and generally exhibit better ecological condition than lakes in the other regions (Zhang et al., 2019). In contrast, the lakes in 

the plain regions are frequently influenced by anthropogenic activities, such as urbanization, population growth, agricultural 

fertilizer and wastewater discharge (Feng et al., 2019a; Tong et al., 2020). 

 110 

Figure 1: The geographical distribution of lakes with water clarity (SDD) records of more than 10 years (lake area > 1ha; N=11336) 

in different lake regions across China (a). The percentage distribution of lakes, based on the number of lakes and lakes surface 

area in the five lake regions are shown in the pie charts. The left one (green box) shows about all lakes extracted by Landsat 

images (b), while the lower left corner one (red box) displays about lakes with SDD records more than 10 years (c). 
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3 Methods 115 

3.1 Waterbody mask 

In this study, we use band ratios (Green/NIR or Green/SWIR), Normalized Difference Water Index (NDWI), Tasseled Cap 

Transformation (TC), and a density slicing with multi-threshold approach to build a decision tree for retrieving water body 

boundaries. Landsat images were classified into two categories: water and non-water areas (Feyisa et al., 2014; Wang et al., 

2020b). The extracted water bodies were then converted into polygons with contiguous pixels and stored in a shape file using 120 

ArcGIS10.3 (ESRI Inc. Redlands, CA, USA). We divided water bodies into lakes, reservoirs, and rivers according to their 

shoreline features, and also through referencing to the Global Reservoirs and Dams database (Lehner et al., 2011), Chinese 

Reservoirs and Dams database, and high-resolution images from Google Earth. Water bodies with less than four pixels were 

removed to avoid shoreline interference. Further, lakes and reservoirs with surface area <1 ha were removed in the GIS 

database (Song et al., 2020). Due to the fluctuation of lake surface area, we updated the lake shoreline shape file using the 125 

images which have been selected to map SDD in each year. The shape file of lakes and reservoirs (herein lakes) was used as 

a water mask to extract the SDD map derived from the Landsat imageries (Fig. 1a). 

3.2 SDD in-situ data collection across China 

We used three SDD datasets for model calibration and validation (Fig.2a). To assemble the first dataset (IGA-04-19), we 

conducted 37 field campaigns from April 2004 to September 2018, surveyed 361 water bodies and collected 2,293 samples 130 

from lakes and reservoirs across China (Table S1), most of which were collected in late summer and early autumn. The 

second dataset was assembled from field campaigns (2007-2009) conducted by researchers from the Nanjing Institute of 

Geography and Limnology, Chinese Academy of Sciences. The third dataset (229 samples) was collected by different 

research groups during 1980s-1990s, and included records for which data collection date was not available. The spatial 

distribution of these three groups samples is shown in Fig. 2a.  135 

At each station, Secchi disk depth (SDD, in cm) was determined to represent water clarity, and was taken as the depth from 

water surface where a black-white Secchi disk can no longer be seen under water. For the first two datasets, SDD data 

derived from field surveys (2004-2018) were matched with the top of air reflectance (TOA) data collected by Landsat 

satellites overpassing a lake/reservoir within 7 days of field site visit, and the average reflectance of pixels within a 3×3 

window matching a sampling point was extracted for bands 1-5 (Kloiber et al., 2002). After matching the in-situ SDD with 140 

images, altogether, 1,301 and 340 pairs of data were obtained based on the first and second SDD datasets, respectively. For 

the third dataset, the cloud-free TOA images whose date were closest to time recorded on the lake survey reports were 

selected to match the measured SDD, which were between May and October during the period of field survey. Finally, 229 

match-ups were found by expanding the time window between the third dataset of SDD and images. 

https://doi.org/10.5194/essd-2021-227

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 22 July 2021
c© Author(s) 2021. CC BY 4.0 License.



6 

 

3.3 Acquisition and processing of Landsat imagery data 145 

To track the dynamics of lakes SDD in the past 35 years, all available Landsat TM/ETM+/OLI images of TOA across China 

were used in this study (∼82,000 images, >60 terabytes of data) via GEE platform. The number of images used for SDD 

estimate in a specific year spanned a large range, from 371 in 1984 to 4,784 in 2018 (Fig. 2b), with more images available 

when two satellites operated simultaneously in space to acquire Landsat imagery. In this study, based on the GEE platform, 

the TOA images were mainly collected during the ice-free season (May to October) from 1984 to 2018 in the TQR, MXR 150 

and NLR, except for the ELR and YGR. The pixel_qa band, as a pixel quality control band generated from the CFMASK 

algorithm, was selected to mask out the land and snow/ice, and to remove cloud contamination (cloud cover >60%) in the 

GEE platform, thus minimizing the potential impact of cloud on SDD estimation accuracy. Landsat imagery atmospheric 

correction is a key step for water quality inversion (Wang et al., 2009), particularly for monitoring of temporal variation at 

large scale. More than 98.35 % of the pixels within China had a total of qualified observations > 35 in the past 35 years, and 155 

the majority of images had more than three scenes of good observations for each year. 

3.4 Model for SDD estimation and mapping in GEE 

Model development was a key step in this study. For the first match-ups dataset, i.e., 1,301pairs of in-situ SDD and TOA, we 

divided the valid data into four groups, with three groups used to calibrate the model (N= 976) and one group (N = 325) used 

for model validation. Based on a previous investigation, the red and blue (or green) band ratio was found to improve the 160 

performance of reflectance-based water quality models both in terms of their spatial and temporal transferability (Kloiber et 

al., 2002; Olmanson et al., 2008; Song et al., 2020). Thus, by trying the band combination, the red/blue band ratio algorithm 

using the first matched dataset was employed in this study to map SDD of water bodies, and was mathematically expressed 

as: 

 Ln (SDD) = -5.6828×(Red/Blue) + 7.8413,                                                                                                                               (1) 165 

Then, combining the aforementioned image-processing methods, Eq. (1) was applied to the TOA images from 1984 to 2018 

to estimate the SDD in the lakes with an area >1 ha over China via the GEE platform. The annual mean SDDs at the pixel 

scale were obtained by averaging all available estimated results, and then the lake-based annual mean SDDs had been further 

worked out. During the calculations, we only took into consideration lakes with SDD results of more than 10 years. At last, 

10,814 lakes (size > 1 ha) were used to examine the interannual dynamics of SDD (Fig.1c). 170 
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Figure 2: Location of the sampled waterbodies (lakes or reservoirs) and Landsat Worldwide Reference System 2 (WRS-2) 

path/row across China (a). Number of Landsat scenes used in ice-free season from 1984 to 2018 (b). 
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3.5 Statistical analysis 175 

The SDD estimation model performance was assessed using determination coefficient (R2), RMSE, relative RMSE (rRMSE), 

and mean absolute error (MAE).  

𝑅𝑀𝑆𝐸 =  √∑ (𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖)
2𝑁

𝑖=1

𝑁
,                                                                                                                                    (2) 

𝑟𝑅𝑀𝑆𝐸 = 100 ×
𝑅𝑀𝑆𝐸

𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
,                                                                                                                                                       (3) 

𝑀𝐴𝐸 =  
∑ |𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖|𝑁

𝑖=1

𝑁
,                                                                                                                                           (4) 180 

where N refers to the number of water samples, i refers to the current water sample number, 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 refers to the in situ 

SDD measurements, and 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 refers to the estimated SDD from the Landsat data. 

Once the annual mean SDD maps were generated, the average of SDD for each pixel within a lake were calculated for the 

observation period (1984-2018). For each lake region and individual lake, the spatiotemporal dynamics in SDD were 

analysed, including the variations of the average, changing trend, number of lakes, and lake surface area. The interannual 185 

changing trend was assessed the 5% significance level, and the slope from linear regression analysis between SDD values 

and years. These analyses were conducted with the IBM SPSS software. Based on the analysis of interannual change trend in 

SDD, the lakes in China were divided into three types - lakes with SDD showing significantly increasing (Type I: p < 0.05 

and slope > 0), decreasing (Type II: p < 0.05 and slope < 0) and non-significant (Type III: p > 0.05) trends from 1984-2018. 

4 Validation of SDD estimation model 190 

The estimation model of lake SDD across China was built using 3/4 of the first matched dataset (976 samples), for which the 

R2, RMSE, rRMSE, and MAE were 0.79, 100.3 cm, 61.9%, 57.7cm, respectively (Fig.3a). Then, we used 325 samples (1/4 

of the first matched dataset) to validate the model, and the validation results indicated stable performance by showing 

comparative errors (R2=0.80, RMSE = 92.7 cm, RMSE% = 57.6%, MAE= 54.9 cm; Fig.3b). Further, the second and the 

third datasets were both used to validate model performance with a major focus on testing the temporal transferability of the 195 

model (Fig.3c, d). The second dataset (340 samples), collected as part of the Chinese lakes survey conducted by Nanjing 

Institute of Geography and Limnology, also indicated a good model performance (R2=0.78, RMSE = 74.7 cm, RMSE% = 

59.1%, MAE= 42.6 cm; Fig.3c). The third dataset (229 samples) was assembled by the first lake surveys conducted in the 

1980s, and was used to validate the model performance for SDD derived from historical remotely sensed data. Our results 

also demonstrated a stable performance for lake SDD before 1990s (R2=0.81, RMSE = 61.8 cm, RMSE% = 50.6%, MAE= 200 

40.3 cm; Fig.3d). Comparison of validation results for these different periods and datasets demonstrated the stable 

performance of the SDD model (Fig. 3). Therefore, estimation of SDD using images acquired by Landsat series of sensors 

provides a reliable method to examine historical trend in SDD through time series analysis. 
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Figure 3: Model calibration and validation for SDD estimation with Landsat surface reflectance product acquired by different 205 
Landsat sensors, (a) model calibration with 3/4 of the total number of samples from the first dataset, (b) model validated with 1/4 

of the total number of samples from the first dataset, (c) model validated with the second dataset independently collected during 

the limnological survey (2007-2009), and (d) model validated with the third dataset collected in the first lake environmental survey 

during 1985-1990. 

5 Spatial distribution of SDD in lakes in 2018   210 

Fig. 4a shows the spatial distribution of annual mean SDD of lakes across China in 2018, demonstrating remarkable 

spatial variation, with lakes in the plateau regions generally exhibiting higher SDD than those situated in the flat plain 

regions. Based on their mean SDD, all lakes across China in 2018 were divided into six levels, i.e., 0-0.5 m, 0.5-1 m, 1-2 m, 

2-3 m, 3-4 m, and >4 m, with 26.4%, 25.7%, 28.8%, 12.5%, 4.3%, and 2.3% of lakes in each SDD level, respectively (Fig. 

4b). Although the number of lakes with SDD < 2 m were more numerous (80.9% of lakes), the total area of lakes with SDD 215 

between 0-0.5 m and > 4 m was the largest, accounting for 24% and 24.3% of the total area in each category, respectively 

(Fig. 4c). 

Regarding the annual mean SDD in the five lake regions, the top three regions were TQR (3.37 m), YGR (2.35 m), MXR 

(1.92 m), followed by ELR (1.50 m) and NLR (0.69 m) (Fig. 4d). Except for the YGR region, lakes with SDD <2 m were 
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most common accounting for 96% (NLR), 82.8% (ELR), 80.5% (MXR) and 77.6% (TQR) of all lakes in the other regions, 220 

respectively (Fig. 4e). In the YGR, the lakes with SDD in 1-3 m range had a wide distribution, and the total proportion of 

lakes with SDD < 3 m was 85.4% in this region (Fig. 4e). Spatially, the lakes were widely scattered over the ELR, except for 

the northern and western sections of that region (i.e., northern and southern of Hebei province, northeast of Henan province, 

northwest of Shandong province and western of Hubei and Hunan provinces). The lakes in the NLR are located in the 

northwest and southwest of the region. In the YGR, the lakes are clustered in the southern and northeast of the region (i.e., 225 

mid-east of Sichuan province and most of Yunnan and Guangxi province). A large number of lakes were inventoried in the 

TQR, including a collection of large lakes situated in the mid-west and eastern sections of the region, particularly in 

northwest Tibet and in the western and eastern sections of Qinghai province. In the MXR, the lakes were mainly distributed 

in the mid-east and mid-west of Inner Mongolia and parts of western and northern of Xinjiang province. 

 230 

Figure 4: Annual mean SDD of lakes (> 1 ha) across China in 2018. (a) the spatial distribution of lakes with SDD values. (b) the 

proportion of lake number with SDD values that were divided into six levels (i.e., 0-0.5 m, 0.5-1 m, 1-2 m, 2-3 m, 3-4 m, and >4 m). 

(c) the proportion of lake area in six SDD levels. (d) the annual mean SDD in five lake regions. (e) the proportion of lake number 

with different SDD levels in the five lake regions. 
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6 Interannual dynamics of lake SDD during 1984-2018 235 

6.1 Average and temporal trend in lakes SDD 

Similar to the spatial pattern of SDD estimates obtained in 2018, the multi-year average SDD values in each lake region 

also revealed similar trends, i.e., the lakes located in the plateau region were more transparent than lakes from other 

physiographic regions (Fig. 5a). During 1984-2018, lakes in the NLR exhibited the lowest SDD (mean: 0.60±0.09 m), 

followed by the ELR (mean: 1.23±0.17 m). The MXR showed intermediate SDD values (mean: 1.63±0.38 m), and the YGR 240 

exhibited relatively higher SDD (mean: 2.35±0.21 m). Lakes in the TQP had the clearest water (mean SDD: 3.32±0.38 m; 

Fig. 5a). As shown in Fig. 5a, mean annual SDD estimates in the five lake regions were in agreement with in-situ measured 

SDD.  

Regarding the interannual change trend, with the exception of the TQR, results for the other four lake regions indicated a 

significant (p<0.05) increasing trend in SDD during the study period (Fig. 5b). At the scale of individual lakes, 55.4% (5,993 245 

out of 10,814) and 3.5% (377 out of 10,814) of lakes experienced statistically significant (p<0.05) increasing and decreasing 

trends, respectively, and the remaining lakes (41.1%, 4,444 out of 10,814) displayed no significant change (Fig. 5c). Among 

the five lake regions, except for the MXR, more than half of all lakes exhibited significant increasing trends (Fig. 5c). 

Ranked by the total number of lakes exhibiting significant increase in SDD, the lake regions can be ordered as follows: TQR 

(61.7%, 618 out of 1,002), ELR (57.1%, 3,396 out of 5,943), YGR (54.6%, 829 out of 1,517) and NLR (51.3%, 784 out of 250 

1,528). As for the lakes with decreasing SDD values, the NLR had the highest number of such lakes (8.4%, 128 out of 1,528) 

followed by the MXR (7%, 58 out of 824) (Fig. 5c). 

Among the three types of lakes — lakes with SDD showing significant increasing (Type I), decreasing (Type II) and 

nonsignificant (Type III) trends from 1984 to 2018, the lake SDDs in the Type I mainly concentrated in 0.5-3 m, in Type II 

were dominated by 0-2 m, and in the Type III widely distributed in 0-3 m, the proportions of which were 81.11% (4,861 out 255 

of 5,993), 80.11% (302 out of 377) and 85.13% (3,783 out of 4,444) of the total lake number in each type of lakes, 

respectively (Fig. 5d-f). At the five lake regions scale, whatever the type of lake belongs to, the distribution of lake SDDs in 

the NLR, TQR and MXR looked similar, whereas that in the ELR and YGR differed from these three lake regions. The 

former was mainly between 0-2 m, the latter ranged from 0.5-3 m (ELR) and 1-4 m (YGR), respectively (Fig. 5d-f).  
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 260 

Figure 5: The interannual dynamics of lake SDDs in China from 1984-2018. (a) the multi-year average SDD values of the modelled 

and in-situ SDDs in the five lake regions. (b) the interannual trends of mean lake SDDs in five lake regions based on the 5% 

significant level and slope that is the coefficient of simple linear regression. (c) the number of lakes with SDD showing statistically 

significant (p < 0.05) increasing (Type I), decreasing (Type II) and nonsignificant (Type III) trends. The proportions of lake 

numbers with different SDD values (0-0.5 m, 0.5-1 m, 1-2 m, 2-3 m, 3-4 m, and >4 m): (d) lakes with SDD significant increasing, (e) 265 
lakes with SDD significant decreasing, (f) lakes with SDD no significant trend. 
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6.2 Lake SDDs versus different lake size in China 

The annual mean SDD and lake area were both separated into six levels, and the proportions of lakes with different areas in 

each SDD category were demonstrated in the Fig. 6. In terms of the number of different lake areas in five lake regions, the 

lakes with annual mean SDD values in the ELR, NLR and YGR were dominated by an area of 0.01-1 km2, followed by an 270 

area of 1-10 km2. In the MXR, the lakes were mainly concentrated on an area of 1-10 km2, followed by an area of 0.01-1 

km2 (Fig. 6a-f). In the TQR, when the SDDs < 2 m, the lakes covering an area of 1-10 km2 were in the majority (Fig. 6a-c); 

when the SDDs > 2 m, the lakes with an area of >10 km2 occupied a dominant position, especially for lakes with an area of 

10-50 km2 and 100-500 km2 (Fig. 6d-f).  

Among the three types of lakes in each SDD category, there exists the similarity in the distribution of lakes with different 275 

sizes between the Type I and Type III, while that of in the Type II differentiated from these two types of lakes (Fig. 6). In the 

ELR, NLR and YGR, almost more than 50% of the lakes were in 0.01-1 km2 range among the lakes of Type I and Type III. 

The lakes of Type II, located in the three lake regions, with SDD values of 0.5-1 m in the ELR, and of 0-0.5 m and 2-3 m in 

the NLR were dominated by an area of 1-10 km2, whereas the remaining lakes were mainly concentrated in an area of 0.01-1 

km2 (Fig. 6a-f). In the MXR, the number of lakes covering an area of 1-10 km2 in the three types of lakes were much more 280 

than that of in other sizes among the lakes with SDDs in 0-3 m range (Fig. 6a-d). When the lake SDDs were > 3 m in this 

lake region, most of three types of lakes were dominated by the lakes covering an area of 0.01-1 km2, apart from the lakes of 

Type III with SDD values > 4 m in the Type III that the proportion of lakes with an area of 1-10 km2 was slightly higher than 

that with an area of 0.01-1 km2, (Fig. 6e-f). 

The distribution of the three types of lakes with different lake sizes in the TQR differed from that in the other four lake 285 

regions. As for the lakes of Type I and Type III in the TQR, when the SDDs were between 0-2 m, the proportions of lakes 

covering an area of 1-10 km2 were the largest, ranging from 49.64% to 81.12% (Fig. 6a-c); when the SDDs were between 2-

3 m, the lakes with an area of 10-50 km2 in the Type I and of 100-500 km2 in the Type III had the largest proportions of 

numbers, accounting for 40.43% and 35.00%, respectively (Fig. 6d); when the SDDs were >3 m, the lakes covering an area 

of 100-500 km2 were dominant in the two types of lakes, followed by the area of 10-50 km2 (Fig. 6e-f). With respect to the 290 

lakes of Type II in the TQR, the lakes with SDDs in the 0-0.5 m category were distributed in the area of 10-50 km2, followed 

by the area of 50-100 km2 (Fig. 6a); when SDDs were in the 0.5-1 m category, the number of lakes with an area between 1-

10 km2 and 10-50 km2 were the most, the percentages of which both were 40.00% (Fig. 6b); when SDDs were in the 1-2 m 

category, there were two kinds of lakes whose areas were in the range of 0.01-1 km2 and 50-100 km2, and their numbers 

were the same (Fig. 6c); when SDDs were in the 3-4 m category, only the lakes with an area of 1-10 km2 existed (Fig. 6e).  295 
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Figure 6: The proportions of lake numbers in different areas in the six SDD categories. The six SDD categories were: (a) 0-0.5 m; 

(b) 0.5-1 m; (c) 1-2 m; (d) 2-3 m; (e) 3-4 m; (f) >4 m. The SDD values were the average of estimated results in each lake from 1984-

2018. In the five lake regions, the lakes were also divided into three types — lakes with SDD showing significant increasing (Type 

I), decreasing (Type II) and nonsignificant (Type III) trends from 1984-2018. 300 
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6.3 Spatial distribution of lakes with different SDD values 

The spatial distributions of lakes and their total lake numbers and areas of the three types of lakes in five lake regions were 

shown in the Fig.7. In the SDD of 0-0.5 m category (Fig.7a), the NLR had the largest lake numbers and areas in the three 

types of lakes, accounting for 34.51% and 33.20% in the Type I, 63.19% and 48.17% in the Type II, and 44.46% and 34.38% 

in the Type III of the total lake numbers and areas in the lake region, respectively. Spatially, the lakes in the Type I and Type 305 

III were mainly distributed in the central of the ELR, the western of the NLR, the mid-west of the TQR and the mid-east of 

the MXR, while that in the Type II were concentrated on the western of the NLR and eastern of the MXR. 

In the SDD of 0.5-3 m categories (Fig.7b-d), the lakes of Type I and Type III were the most in the ELR, but the largest total 

lake areas of five lake regions were different from these two types of lakes. Specifically, in the lakes of Type I, the total lake 

areas in the TQR were the largest, the percentages of which were 36.38% (SDD: 0.5-1m), 44.14% (SDD: 1-2 m) and 61.03% 310 

(SDD: 2-3 m), respectively (Fig.7b-d). In the lakes of Type III, the ELR and the TQR had the largest proportions of lake 

areas when the lake SDDs were between 0.5-2 m and 2-3 m, respectively, accounting for 76.80% (SDD: 0.5-1m), 46.90% 

(SDD: 1-2 m) and 46.65% (SDD: 2-3 m) of the total lake area in each lake region, respectively (Fig.7b-d). In the lakes of 

Type II, the region that had the largest proportions of lake numbers and areas were inconsistent in each SDD category (0.5-3 

m. When the SDDs were in the range of 0.5-1 m, the NLR had the largest lake numbers, while the MXR had the highest 315 

percentage of lake area (Fig.7b); when the SDDs ranged from 1-2 m, the total lake numbers and areas in the ELR were the 

largest (Fig.7c); when the SDDs were in 2-3 m range, the lake numbers in the NLR were the most and the total lake area in 

the ELR were the largest (Fig.7d). Spatially, the distributions of lakes in the Type I and Type III with SDD between 0.5-2 m 

were concentrated on the most places of the ELR, the northwest and southeast of the NLR, the southern of the YGR, the 

mid-west of the TQR, and the mid-east and part of the northern of the MXR (Fig.7b-c). When these two types of lakes SDD 320 

were in 2-3 m range, they were distributed in the central and southeast coastal of the ELR, the central and southwest of the 

YGR, and the western of the TQR (Fig.7d). In the Type II of lakes with SDD were between 0.5-3 m, their distributions were 

scattered over part of the central and southeast coastal of the ELR, and southwest of the YGR (Fig.7b-d). 

In the SDD of 3-4 m category (Fig.7e), the regions that had the most lakes in the three types of lakes were the YGR (Type I: 

53.56%), the ELR (Type II: 48.00%), and the ELR (Type III: 53.19%), respectively. The regions that had the largest lake 325 

area were the TQR (Type I: 63.51%), the YGR (Type II: 90.06%), and the TQR (Type III: 75.22%), respectively. Spatially, 

the lakes of the Type I and Type III were concentrated at the junction of the ELR, YGR and MXR, the southeast coastal of 

the ELR, the southern of the YGR, and the western of the TQR. The lakes of Type III mainly distributed in the part of the 

southeast coastal of the ELR and the southern of the YGR. 

In the SDD of >4 m category (Fig.7f), the TQR had the largest lake number and area in the lakes of Type I, accounting for 330 

39.19% of the total number and 87.34% of the total lake area, respectively. In the lakes of Type II, there were a few lakes 

existed in the MXR and YGR. In the lakes of Type III, the YGR had the most lakes and the TQR had the largest total lake 
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area, accounted for 40.28% of the total number and 87.00% of the total lake area, respectively. Spatially, the distributions of 

these lakes were similar to the lakes with SDD in 3-4 m range. 

 335 
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Figure 7: The spatial distribution of lakes with multi-year average SDD values from 1984 to 2018. The SDD values were divided 

into six levels: (a) 0-0.5 m; (b) 0.5-1 m; (c) 1-2 m; (d) 2-3 m; (e) 3-4 m; (f) >4 m. The lakes were separated into three types of 

lakes— lakes with SDD showing significant increasing (Type I), decreasing (Type II) and nonsignificant (Type III) trends from 

1984-2018.The proportions of total lake area and lake number in each lake region were showed in the pie charts and histogram, 

respectively. 340 

7 Comparison with past studies 

Several past studies have examined the spatiotemporal variation of SDD in lakes across China (or parts of China), but 

these investigations were mainly based on MODIS images to estimate SDD in large lakes (>10 km2) and primarily focused 

on the period after 2000 (Feng et al., 2019a; Liu et al., 2020a; Pi et al., 2020; Wang et al., 2020a). Therefore, it becomes a 

challenge to compare these past results with the results of the present study due to difference in the period of interest, 345 

resolution of the satellite images and lake size (>1 ha in our study). Zhang et al. (2021) adopted an empirical model to 

retrieve SDD of lakes (>10 km2) across China based on Landsat surface reflectance products (2016 - 2018) within GEE. 

Because of the similarity of method and images used in Zang et al. (2021) and the present study, it provides a unique 

opportunity to compare in-situ measured SDD with SDD estimation obtained by Zhang et al. (2021) and in our study. To that 

end, we used available in-situ SDD data (2019 – 2020) collected at monitoring stations in Lake Taihu and Lake Dianchi to 350 

assess the accuracy of the two models. As shown in Fig. 8 and demonstrated by statistical parameters (higher R2, lower 

RMSE, rRMSE and MAE), the estimation model proposed by our study exhibited better performance to retrieve SDD in 

both Lake Taihu (Fig.8c) and Lake Dianchi (Fig. 8d). 

8 Data availability 

The dataset of water clarity of lakes developed in this study consists of one .shp file document containing the annual mean 355 

values of water clarity in each lake (size > 1 ha) during 1990-2018, with a time resolution of 5-year. The dataset can now be 

accessed through the website of the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn): DOI: 

10.11888/Hydro.tpdc.271571. 
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Figure 8: Comparison of different SDD estimation models based on Landsat images within GEE. (a and b) the spatial distribution 360 
of monitoring stations located in lake Taihu and lake Dianchi, respectively. (c – f) the regression line between the measured SDD in 

lake Taihu (N = 136) and lake Dianchi (N = 84) during 2019 – 2020 and estimated SDD values that were obtained from the 

estimation models developed by our study and Zhang et al. (2021), respectively. 
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9 Conclusions 

As a comprehensive indicator of water eutrophication, encompassing nutrient enrichment, algal abundance and suspended 365 

sediment, water clarity can serve as a valuable index for tracking the ecological health of aquatic ecosystems and guiding the 

actions of water resources managers. Although field measurement of water clarity can easily be made with a Secchi disk 

apparatus, this approach is not suitable for long-term time series measurements of lake water clarity at regional and national 

scales. This information is highly valuable, and can be extracted from archived satellite data. In-situ water clarity data 

collected in lakes across China during 2004-2018 was used to calibrate and validate SDD models that incorporate top of air 370 

reflectance product and Google Earth Engine to map the spatiotemporal dynamics of SDD over a 35-year time span (1984-

2018). The SDD model was validated using different datasets, and results confirmed the stable performance and temporal 

transferability of the SDD estimation model. Derived SDD estimates were analysed at the lake region and at the individual 

lake scales. During the study period (1984-2018), annual mean SDD values in the TQR, YGR, MXR, ELR and NLR regions 

were 3.32±0.38 m, 2.35±0.21 m, 1.63±0.38 m, 1.23±0.17 m and 0.60±0.09 m, respectively. Among the 10,814 lakes 375 

with >10 years of SDD results, 55.4% and 3.5% experienced statistically significant (p<0.05) increasing and decreasing 

trends of water clarity, respectively. The remaining lakes (41.1%) displayed no significant trends. With the exception of the 

MXR, more than half of lakes in all the other regions exhibited a significant trend of increasing water clarity. In the ELR, 

NLR and YGR regions, most of the lakes displaying either an increase or decrease in SDD tended to be of 0.01-1 km2 in size 

whereas in the TQR and MXR lakes exhibiting clear trends in SDD were mostly large lakes (>10 km2). Spatially, the lakes 380 

in the plateau regions (TQR, YGR) generally exhibited higher SDD than those situated in the flat plain region. The time 

series of water clarity information presented in this study could aid local, regional and national decision-making on policies 

and management for protecting/improving inland water quality in China. The research approach implemented also could 

potentially be used to map water clarity in lakes at the global scale, an effort that can provide useful information for 

evaluating decadal trends in surface water quality resulting from adoption of pollution control policies. 385 
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